3 research outputs found

    First-Order Induced Current Density Imaging and Electrical Properties Tomography in MRI

    No full text
    In this paper, we present an efficient dedicated electrical properties tomography (EPT) algorithm (called first-order current density EPT ) that exploits the particular radio frequency field structure, which is present in the midplane of a birdcage coil, to reconstruct conductivity and permittivity maps in this plane from B ^ + 1 data. The algorithm consists of a current density and an electrical properties step. In the current density reconstruction step, the induced currents in the midplane are determined by acting with a specific first-order differentiation operator on the B ^ + 1 data. In the electrical properties step, we first determine the electric field strength by solving a particular integral equation, and subsequently determine conductivity and permittivity maps from the constitutive relations. The performance of the algorithm is illustrated by presenting reconstructions of a human brain model based on simulated (noise corrupted) data and of a known phantom model based on experimental data. The method manages to reconstruct conductivity profiles without model related boundary artifacts and is also more robust to noise because only first-order differencing of the data is required as opposed to second-order data differencing in Helmholtz-based approaches. Moreover, reconstructions can be performed in less than a second, allowing for essentially real-time electrical properties mapping.Accepted author manuscriptCircuits and System

    B1-based SAR reconstruction using contrast source inversion–electric properties tomography (CSI-EPT)

    No full text
    Specific absorption rate (SAR) assessment is essential for safety purposes during MR acquisition. Online SAR assessment is not trivial and requires, in addition, knowledge of the electric tissue properties and the electric fields in the human anatomy. In this study, the potential of the recently developed CSI-EPT method to reconstruct SAR distributions is investigated. This method is based on integral representations for the electromagnetic field and attempts to reconstruct the tissue parameters and the electric field strength based on B+1B1+ field data only. Full three-dimensional FDTD simulations using a female pelvis model are used to validate two-dimensional CSI reconstruction results in the central transverse plane of a 3T body coil. Numerical experiments demonstrate that the reconstructed SAR distributions are in good agreement with the SAR distributions as determined via 3D FDTD simulations and show that these distributions can be computed very efficiently in the central transverse plane of a body coil with the two-dimensional approach of CSI-EPT.Circuits and System

    Accelerating implant RF safety assessment using a low-rank inverse update method

    No full text
    Purpose: Patients who have medical metallic implants, e.g. orthopaedic implants and pacemakers, often cannot undergo an MRI exam. One of the largest risks is tissue heating due to the radio frequency (RF) fields. The RF safety assessment of implants is computationally demanding. This is due to the large dimensions of the transmit coil compared to the very detailed geometry of an implant. Methods: In this work, we explore a faster computational method for the RF safety assessment of implants that exploits the small geometry. The method requires the RF field without an implant as a basis and calculates the perturbation that the implant induces. The inputs for this method are the incident fields and a library matrix that contains the RF field response of every edge an implant can occupy. Through a low-rank inverse update, using the Sherman–Woodbury–Morrison matrix identity, the EM response of arbitrary implants can be computed within seconds. We compare the solution from full-wave simulations with the results from the presented method, for two implant geometries. Results: From the comparison, we found that the resulting electric and magnetic fields are numerically equivalent (maximum error of 1.35%). However, the computation was between 171 to 2478 times faster than the corresponding GPU accelerated full-wave simulation. Conclusions: The presented method enables for rapid and efficient evaluation of the RF fields near implants and might enable situation-specific scanning conditions.Microwave Sensing, Signals & SystemsCircuits and System
    corecore